Enhanced performance of a microbial fuel cell using CNT/MnO2 nanocomposite as a bioanode material.

نویسندگان

  • Shafeer Kalathil
  • Hoa Van Nguyen
  • Jae-Jin Shim
  • Mohammad Mansoob Khan
  • Jintae Lee
  • Moo Hwan Cho
چکیده

The anode electrode material is a crucial factor for the overall performance of a microbial fuel cell (MFC). In this study, a plain carbon paper modified with the CNT/MnO2 nanocomposite was used as the anode for the MFC and a mixed culture inoculum was used as the biocatalyst. The modified anode showed better electrochemical performance than that of plain carbon paper, and Brunauer Emmett Teller (BET) analysis showed the high surface area (94.6 m2/g) of the composite. The Mn4+ in the nanocomposite may enhance the electron transfer between the microorganisms and the anode material which facilitates electron conduction. Additionally, MnO2 can be used to store electrons due to its supercapacitance, which is comparable to that of the cytochromes present in the outer cell membranes of electrochemically active microorganisms. The MFC with a modified anode produced a maximum power density of 120 +/- 1.7 mW/m2, while the corresponding current density was 0.262 +/- 0.015 A/m2 at an external resistor of 800 omega with an open circuit voltage (OCV) of 1.07 +/- 0.02 V. The unusually high OCV may be attributed to the high charge density developed on the bioanode by the charge accumulation in the MnO2 of the bioanode. This study showed that the CNT/MnO2 nanocomposite can be an excellent anode material for MFC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of Multi-population Microbial Fuel and Electrolysis Cells Based on the Bioanode Potential Conditions

Microbial fuel cell and microbial electrolysis cell are two major types of microbial electrochemical cells. In the present study, we governed modeling of these systems by concentrating on the simulation of bioelectrochemical reactions in both biofilm and anolyte and considering the effect of pH on the microbial growth. The simulation of microbial fuel and electrolysis cells can be described by ...

متن کامل

Cost Effective and Scalable Synthesis of MnO2 Doped Graphene in a Carbon Fiber/PVA: Superior Nanocomposite for High Performance Flexible Supercapacitors

In the current study, we report new flexible, free standing and high performance electrodes for electrochemical supercapacitors developed througha scalable but simple and efficient approach. Highly porous structures based on carbon fiber and poly (vinyl alcohol) (PVA) were used as a pattern. The electrochemical performances of Carbon fiber/GO-MnO2/CNT supercapacitors were characteriz...

متن کامل

Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors

MnO2/carbon nanotube [CNT] nanocomposites with a CNT core/porous MnO2 sheath hierarchy architecture are synthesized by a simple hydrothermal treatment. X-ray diffraction and Raman spectroscopy analyses reveal that birnessite-type MnO2 is produced through the hydrothermal synthesis. Morphological characterization reveals that three-dimensional hierarchy architecture is built with a highly porous...

متن کامل

Modified CNTs/Nafion composite: The role of sulfonate groups on the performance of prepared proton exchange methanol fuel cell’s membrane

A novel Nafion®-based nanocomposite membrane was synthesized to be applied as direct methanol fuel cells (DMFCs). Carbon nanotubes (CNTs) were coated with a layer of silica and then reacted by chlorosulfonic acid to produce sulfonate-functionalized silicon dioxide coated carbon nanotubes (CNT@SiO2-SO3H). The functionalized CNTs were then introduced to Nafion®, and subsequently, methanol permeab...

متن کامل

Effect of Electrolyte Conductivity and Aeration on Performance of Sediment Microbial Fuel Cell

Sediment microbial fuel cells (SMFCs) are a promising technology for a viable source of energy. This technology is faced with many challenges, such as limited mass transfer and low electricity generation. The aim of this research was to investigate the effect of electrolyte conductivity and aeration effect on power generation from SMFCs. Electrical conductivity was adjusted at 6different levels...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of nanoscience and nanotechnology

دوره 13 11  شماره 

صفحات  -

تاریخ انتشار 2013